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TRANSIENT RESPONSE ANALYSIS OF AN ELECTRET
MICROPHONE

Whang Cho*

(Received February 18, 1991)

The transient response of an electret microphone without a back cavity (i.e., with no cavity below the back electrode which
communicates with the air trapped between the foil and the back electrode) is analyzed by examining the motion of the electret
foil in response to a transient acoustic signal applied uniformly on the foil face. The analysis uses a normal mode expansion of the
motion of the circular diaphragm. A numerical evaluation of the time domain response of the electret microphone based on the
analysis is pressented for the acoustic excitation by an N-wave(i.e, shock wave). Results for the N-wave show good agreement
with experimental measurements, both in motion of membrane and output voltage.
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1. INTRODUCTION

Since the behavior of foil electret transducers was first
introduced by Sessler and West (1962), there has been rapid
progress in electret applications. The major application
which has ensued is the electret microphone. A review of the
development of the foil electret microphone may be found in
papers by Sessler and West (1973) and Sessler (1980).

Although electret foil microphones have been recognized as
having an ability to provide flat frequency resp onse, low
distortion, and low vibration sensitivity without requiring an
external DC bias, and have been used to record high fre-
quency signals, little theoretical work has been done on the
transient behavior of the electret foil microphone. Qualitative
assessments have suggested that the electret microphone
gives more “crisp” recording results but the assessments have
not been physically explained yet. With this strong motiva-
tion, this paper will analyze theoretically the transient behav-
ior of a geometrically rather simple type of electret foil
microphone.

The solution process of the problem at hand can be divided
into two parts: finding the static deflection of the electret
membrane and finding the dynamic deflection. For the static
part of the solution direct use of the results given by Busch-
Vishniac (1984) was made. This implies that major portion
of this paper will be devoted to finding the dynamic behavior.

Since the transient motion of the electret foil of a micro-
phone depends upon the initial static deflection, which is due
to electrostatic forces on the membrane and is well described
by a linear partial integro-differential equation, approximate
solutions of this equation are obtained first for the electret
microphone whose circular membrane is assumed to be held
clamped at its edge. These solutions are then used to find a
nonlinear partial integro-differential equation for the
dynamic membrane motion. Finally, an approximate solu-
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tion for the motion of the membrane is found by linearizing
the motion equation and applying an operational calculus
technique. Resulting output voltage is also found as a func-
tion of average displacement of membrane.

2. MODEL OF SYSTEM

Figure 1 shows the microphone model used in the analysis.
It consists of a foil electret under tension held above the rigid
backplate by a ridge of height Y, at radius » = 4. Behind the
backplate is an air gap of volume v. As shown in Fig. 1 the
deflection is toward the backplate. The deflection Y (7, ¢) is
measured from undeflected position of the foil electret.

The configuration shown in Fig. 1 is a simplified version of
usual microphone system in a sense that the back cavity and,
therefore, the holes connecting air gap and back cavity are
absent. The back chamber and connecting holes allow a real
system to be more sensitive and more stable by reducing the
stiffness reaction of the small air gap and by providing
additional viscous damping. Note that a system with back
cavity generally results in narrower bandwidth. A steady
state analysis of an electret mictrophone with back cavity
may be found in Zahn (1981), Petritskaya (1966, 1968), and
Zuckerwar (1978).

The air gap between the foil electret and the backplate is
assumed to behave as a pure stiffness under adiabatic”
change. This is a very good approximation up to quite high
frequency range, as high as about 200 Khz (refer to Kinsler
(1982) and Berenak (1954)) because the depth of the air gap
under consideration is very small (about 25.4 x 10~%cm),

The foil electret is assumed to be under isotropic tension
which remains constant as the foil moves and will be valid as
long as the deflection of the foil is very small. Typical

(1) The air in the gap could have been assumed to be under
isothermal conditions because the surface-to-volume ratio is so
large that heat transfer should be efficient. But because the fre-
quency range dealt here are greater than 3Khs, the half period is
not long enough for much heat transfer to take place.
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Fig. 1 Model of electret microphone

deflections are of the order of 1077cm. Also, the bending
stiffness of the foil is neglected in comparison with the ten-
sion force of the membrane. For typical foil electrets using
Teflon this assumption is accurate because the electrets are
extremely thin (under 75X 107%cm in thickness).

There are six possibie sources of forces which affect the
motion of the membrane : inertia, tension, incident pressure,
air gap stiffness, damping due to interaction of membrane
with neighboring air, and electrostatic forces. Some of these
will be considered in details in the following.

First, consdier the construction of the air gap stiffness. For
an adiabatic change of a gas

pv’ = constant, (1)

where p is the pressure, » the volume, and y the ratio of
specific heat at constant pressure to specific constant volume
(y=1.4 for air). A differential change of pressure due to
differential volumetric change is thus

ap=—LT v, @)

where p, and v, are equilibrium values. The volumetric
change of the air gap in the microphone results from foil
motion.

2 a
dv= ﬁ ﬁ Yu(r, t) rdrdd, 3)

where Y, (7, ¢) denotes dynamic deflection of the electret foil
in excess of static deflection Y;(7). The resulting restoring
force per unit area provided by the air gap may be written as

2n fra
fear==PL [ [*u(r, 1) rdras, @

where fgp is negative if deflection is positive (i.e.,, down-
ward) and vice versa.

Next consider the electrostatic force per unit area on the
foil. Sessler (1980) has shown that this force is given by

P _ (so+ee,V)? (5)
electrostatic 260(steYoteYetely) 2

where s is the foil thickness in cm, ¢ is the charge density in

esu/cm?, ¢ is the dielectric constant of polymer (e=2.1 for
Teflon), and V is the output voltage in volts. Note that this
force is a function of radial location and time because Y;= Y
(r) and Yu=Yu(r, t),

Now consider the damping force on the foil electret. Once
the foil is excited by an incident sound wave and starts to
vibrate, the foil pushes the neighboring air layer back and
forth, giving some energy back to the space. This mechanism
of energy loss is neglected for most vibration analysis
because the vibrating object usually has a much larger mass
than that of neighboring air layer, but here this is not the
case.

The mass of the foil is so small that this energy loss can not
be neglected. The mechanism of this energy transfer is well
defined in acoustical terminology by the radiation impedance
of a foil. Exact derivation of the radiation impedance of an
arbitrarily moving circular membrane is very involved and
not pursued here. Instead, actual impedance is approximated

by the counterpart of rigid circular piston in an infinite baffle.
The assumption under which this approximation can be justi-
fled is that the velocity of sound in the surrounding fluid (air
in this case) is much greater than the wave propagation
velocity in the membrane. If this assumption holds, the
membrane hardly feels the pressure difference between any
two points on its face due to fast compensation by sound
propagation. A more detailed discussion on this subject is
given in Morse and Ingard (1968),

The well known formula for specific acoustic radiation
impedance (=p/u where p=pressure and » =velocity) of
a circular rigid piston in an infinite baffle is given by (see
Morse and Ingard (1968))

Z(w) =60o+1X, (6)
where

bo=pec{1-Z 1w}, )

Xo:pc[%“[rsin (w-cos (a)) 'sinz(a)da], (8)

i=Jy—1, w=2wa/c, p the density of air, ¢ the sound veloc-
ity in air, J, the first order Bessel function, @ the radian
frequency, and « the radius of the piston. The real part of Z
(w) is called the radiation resistance and causes the system
to dissipate energy. The imaginary part is called the radia-
tion reactance and explains the air loading effect on the
piston during the motion. Note that even in this case of foil
vibration the mass loading effect can be neglected because it
is orders of magnitude less than the mass reactance of the
foil, In fact at sufficiently high frequency the impedance
becomes purely resistive(see Morse and Ingard (1968)),
From Eq. (6), the damping force per unit area on themem-
brane is

Saamping = 90("”%1_2'[;2”‘/; (98};4) 9

The expression in the parentheses gives the average velocity
of the foil at a given time.

In addition to the energy dissipation associated with radia-
tion, thre is energy loss due to “sloshing” of air trapped in the
air gap. However, this energy loss may be easily argued to be
small enough to be neglected. Since the gap may be modeled
as a very short closed cavity, inside pressure is approximate-
ly uniform thereby implying negligible particle velocity. With
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no particle velocity, the sloshing loss would be zero. Another
energy loss mechanism due to heat transfer, which would
have a rather larger effect than air aloshing, is also englected.

Finally taking the restoring force of the foil due to tension
into account, the following motion equation of the foil is
obtained.

s a;ty" + p‘”f f Y. rdrdd

‘90“")/ / aY"m’rdﬂ TV Yot Vo)

_ (SG+E€0V)2 (10)
2e0(s+eY,+eYs+eVy)?

where p;, is the mass of the foil per unit area, 6,(w) the real
part of the radiation impedance, P the applied pressure, T
the tension of the foil, and V? the Laplacian operator in radial
coordinate.

By setting Y;=0, V=0, and P=0, the static force bal-
ance equation can be obtained from Eq. (10)as

(so+ee,V)?

2y —
TVY.= 2e0(s+eYo+eYs)?

(11)

Note that this equation is highly nonlinear. The nonlinearity
may cause an instability. If ¥Y; is sufficiently small, stable
deflection results. If Y; is not small enough, the tension may
not hold the foil up and let it collapse onto the back electrode.
As mentioned earlier, an approximate solution to this static
deflection equation was found analytically by Busch-Vishniac
(1984) by using a power series expansion. Results show that
the static deflection can be approximated to a high degreee of
accuracy by a parabolic curve. There, it was also shown that
for stable deflection the ratio of the maximum amplitude ( Y;
at the center) to Y, must be of order of 1072 or less.

Since Eq.(10) is very difficult to solve directly, some care-
ful simplification is necessary as follows. First, the numerator
of the second term on the right hand side of Eq. (10) is
expanded to get

ps%+ﬂ/ [V rarae+ ‘9"(‘”)[ " [*9¥e varag

- 2 _ s20*(ee.V /s0)

=—P+TVI (Yt Yo) co(steYoteVstelq)?

_ S0t sto*(egoV /s0)?
2eo(s+eYoteYo+eYs)? 2eo(s+eYoteYs+eYa)?

(12)

Expanding the denominator by assuming | Y/ Yo,|<|Ys/ Yol
and keeping the first order terms only, the DC electrostatic
term becomes
_ sto®
Zeo(s+eYD+ eYst+eYs)?
sc® s*c*eYy
T e (st eV, T eVy)? 26,5t eVoteV)®

(13)

The first of these two terms balances the term 7V?Y,. The
last term in Eq. (12) shows the distortion effect due to the
nonlinear dependence on voltage and may be neglected
because it depends only on a small term of second order (ee,/
s0)%V with sa/ee, being 300 volts of DC potential and V the
output AC voltage of order of milivolts. The remaining
electrostatic ferm is approximated as

_ s*0*(ee, V/s0) -_
co(steYoteYeteVas)?

s?d*(eeoV /s0)
EolsteYoteYs)?

_ 2eYa soeV
{1 steY,+teY, } (s+eYo+eYs)? a4)

What remains is to relate the output voltage V to the
motion of foil electret ¥,. Sessler (1980) showed that

soYy
V= eo(s+eYoteYst+eYa) (15)

by assuming piston-like motion of the foil. A plausible exten-
sion of this result can be made by using the average displace-
ment of the foil instead of assuming a uniform piston-like
displacement for Y, in Eq. (15). This leads to

2n Y
V= 7(61760 o [)’5+EY0+EY5+6Yderd8 (16)

and again under the assumption of | ¥,/ Y,|<|Ys/Y.|, Eaq.
(16) is reduced to

2r
Vﬂzra Eo./()‘ £s+eYo+eYsrdrd0 an

Finally putting terms all together, the motion equation of
the foil is written as

oe e BL [ [y, rarag+ 09 [ [“0¥a, g

(SO-)Z 2
+7rc?[ea(s+eYo+eYs)Tl: j:s+asYo+eYs'drd0
2 (so)%e _
TV*Ys— ml@— P (18)

This is linear partial integro-differential equation. Finally,
introducting a nondimensional radial coordinate §=#/4 and
simplifying the denominator under the assumption of | Y,(<
' Ys| yleld

p Lt ";}2‘ +M f _[ Yadada+‘9° w) f / 9Xs sdsdf

(so)’e - 2
D f £ Yabdsdt~5V* Y,

_ (s0)’e
c(s+eYoteYs

)3 Yo=~—P (19)

where

V2=-§g—6(8§%> (20)

Note that Eq. (19) is linear in Y; linear in Y, and no longer
shows dependence on Y. In other words, to the leading order,
the dynamic deflection of the foil is independent of the static
deflection.

There exist two boundary conditions which constrain the
motion of the foil at the ridge and at the center of the foil. No
deflection at the ridge implies

Ya(6=1, £)=0 (21)
and stable deflection at the center of the foil gives

Ya(6=0, t)=bounded (22)

The initial condition is chosen to be that of no motion and no
deformation, and may be expressed as follows :
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d —l=
E{ Ya(8, t=0)}=0, (23)

and

Ya(6, t=0)=0 . (24

Equations (19) and (21) through (24) ocmpose a mathemati-
cally well posed problem and their solution will be sought in
the following section.

3. ANALYSIS

There may be many ways to solve Eq. (19). Here, opera-
tional calculus technique will be used. One of the advantages
of using this technique is that it allows a closed form solution.
When it is necessary to choose optimum system parameters,
say, radius, ridge height, and tension of the microphone, etc,
then a power series expansion method may be a better choice
for attacking this problem analytically. A power series
approach, however, would require many terms for results
with required accuracy.

The first step in solving Eq. (19) is to assume the proper
form of the solution for a time harmonic input pressure,

P=P,e™ (25)

Here the simplicity and ease of analytical evaluation of the
integral terms and Laplacian operator should be taken into
consideration. In view of the fact that circular membranes
exhibit Bessel function type solutions, and that boundedness
of the solution (refer to Eq. (22)) eliminates the possible
appearance of Neuman function, a reasonable form to be
assumed for the solution to Eq. (19) is

Yu(8, t) = A(w){Jo(adk) —Jo(ak)}e™ (26)

where A(w) is the amplitude factor which is a function of
angular frequency w, /, the zeroth order Bessel function, and
k the wave number, Note that only J, the zeroth order Bessel
function, and £ the wave number. Note that only ], terms
appear because J;(;>0) give no response at the center and
that only term in the parentheses is assumed to be dependent
on §. This assumption will play a role subsequently. Notice
also that Eq. (26) satisfies both boundary conditions, i.e., Egs.
(21) and (22), and the initial conditions, i.e., Egs. (23) and
(24),

The next step is to determine A(w) by substituting the
assumed solution into the original motion equation. Term by
term substitutions yield followings.

Os a;tyvd :-—w2A(a)){]o(03k) —]a(ak)}ex‘wt (27)

2 r2n r1 2
2ot [* [y sabds =227 [ 4 (w) o ash)

—Jo(ak)}e™ds (28)

z_nzzoza A(a))jz(ak)eiwt (29)

Belo) % 0¥ sipdb= iy (w) A () Jalak) e (30)
SOe o [* [ ¥a sdsap

eols+eYs,)?®
:m%a—/l(w)]z(ak) et 31
—%VZ Yo= THA(w) ]o(adk) e™ (32)

Using the above results yields A(w) as

P

Alw) =73 (33)
where
a={mpard | S 0 | aa)
{18~ ot 50V (asb)
+{psw2+;~(§—:‘—:—6n)3}]o(ak) (34)

The presence of the term J,(adk), a function of §, in the
denominator of A(w) violates the initial assumption that A
(w) is a function of w only. This contradiction can be easily
eliminated by properly choosing £ such that the second
parentheses in the denominator of A(w) becomes zero. The
wave number % so defined is given by

£ () :{ ps’ | (35)

s’o’e vz
7 )

Teo(s+eYo

This result for £ has an important physical meaning which
can be seen more easily in the following expression.

)
Cn= % (36)
B w 2
= {pswz+ s2o% } (37)
T ' Tes(s+eYo)®

where C,, is the wave propagation velocity in the membrane.
Note that the wave propagation velocity in the foil is a
function of w, i.e., the motion is "dispersive”. As the fre-
quency of the wave goes to infinity, the corresp onding
propagation velocity in the electret foil approaches that of a
normal simple membrane, ie., (7/ps)"2% As frequency is
reduced it propagates more slowly, becoming stationary for
the pure DC component.
Now expression for A(w) can be simplified as

Alw)=

) s?a’e Tpoya $28% . (38)
{psw + Eo(S+EYa)3}IO(ak) +{ vo T Eo(s+eYo,)?® + 16 (w) }]Z(ak)
Having found A(w) and £, the original assumed solution can be expressed as
Ya(s, t) = - s Po{]o (d&go;‘{zo(dk)}i;a;ZE : (39)
O 5 o R B I
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where £ is given in Eq. (35). Let’s quickly assess the meaning
of Eq. (39). Equation (38) simply indicates the frequency resp
onse of the electret foil microphone. The microphone system
shows different response characteristics to different fre-
quency inputs. The infinite number of resonance frequencies
are determined by the pole of the expression. The response to

_0Yu(8, t)/ot

a general transient pressure input may thus expressed as
+oo . +o0 3
Yad, =g [ TE20 ) gy [Py eerge a0

where the acoustical admittance Y, (8, w) is defined as

Va5, o) =2Xel0: L (D)

_ . ol (ad) —Jo(ah),_ (42)
npoya s°0%e .

oty petan +H{IBIE syt iah (@ | atab)

In what follows, a numerical result is sought for an N-wave
input, which is a good approximation of a spark sound, one of
the most popular transient acoustic sources especially in
acoustic instrument calibration. A spark is generated
between two highly changed electrodes when they exchange
charges through space. The electric discharge usually takes
loess than 10 usec, but the sound generated by the spark has
larger duration than that of the spark (refer to Wright
(1978)). Fig. 2 shows a N-waves which will be used as
trasient pressure inputs in the following analysis. In reality
the propagation of an N-wave sound is well explained in
nonlinear acoustics theory (see Morse and Ingard (1968)),
A matematical form for an N-wave is

(P‘ - )t+R 0<t<r

0 otherwise

P(t) :{ (43)

where r is the duration of the N-wave. Using this expression
the last integral of Eq. (39) is evaluated as

P =["P(r)edr (44)
__ Plore™™ —i(e™ —1)}
w'r
Pz{wr—z(e “ -1} (45)
1wt

Table 1 Parameter Values of the Test Microphone

Symbol Meaning Value
a radius of the

electret foil 1cm
s thickness of the

electret foil 2.5X107%m
€ dielectric constant

of the electret foil 2.1
€o permittivity of air 1/4x volt-esu/cm
o charge density

of electret foil 11.09 esu/cm?
T tension force 1x107°dyn/cm
Yo ridge height of

the microphone 25.4%x107%cm
bo atmospheric

pressure 1.03x 10" °dyn/mc?
Os density of Teflon

per unit area 5.5x107%*g/cm?
y specific heat ratio

of air 14
0 air density 1.21X10%m
¢ sound velocity

in air 3.44 % 10*cm/sec
Vo volume of the

air cavity 80%x107%m?®

The evaluation of Eq. (40) together with Egs. (42) and (45)
can be done numerically using residue calculus since there are
no branch points even though the expression of £ has a square
root form. This is because J, and J, are even functions. In
other words, there exist only even power terms of 4.

There is one double pole at w=0 which comes from the
input pressure function, and infinite number of simple poles
(sn=wn+ids, n=1,...,0) which come from system char-
acteristic equation. In finding the poles of the system charac-
teristics equation, a routine from IMSL (international Mathe-
matical Subroutine Library) was used, which seems to be the
one of few available subroutines. Using this routine about 70
poles (ascending order in magnitude) could be found with
good accuracy. An attempt to find more than 100 poles failed
because of the limit of number handling capacity of the
routine. Fortunately enough, however, a calculated result for
the dynamic response of the microphone using the obtained
poles shows fair convergence with a summation of only 30
terms. Summation of us to 50 terms gives excellent results for
the most practical purposes showing negligible error compar-
ed with that of the 70 term summation.

It can be shown that the residue at w=0 is zero (refer to
Cho (1985)) and the final expression for the dynamic dis-
placement of the foil electret is written in a condensed form
as

Ya(5, ) =2§l{An-sin (wnt) + Bn*cos (wnt)}e %"t (46)

where A, and B, are the real and imaginary parts resp-
ectively of the residue of the poles s,.

The above table shows the numerical values of the parame-
ters of the test microphone, used in the simulation, which was
actually built for the experimental purposes.

4. RESULTS

In Figs. 3, 4, and 5, the theoretically predicted microphone
motions are plotted as a function of time and location for two
periods of the fundamental mode. Each figure corresponds to
one of the three variations in input pressure amplitudes and
durations of N-wave shown in Fig. 2. Figures 6, 7, and 8 show
the resulting voltage output signals calculated from these
motions using Eq. (16).

Figures 3, 4, and 5 show that the center flat portion of the
foil remains underformed but moves up and down following
the motion of the reflected wave from the foil edge until the
reflected waves reach the center. Then the center shows large
amplitude deflection caused by reflected waves overlapping
themselves. The initial uniform motion of the foil of the
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Fig. 2 Typical N-wave
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Fig. 3 P=1., =-0.3, r=1x10"*

microphone gives a large peak voltage which decays in
amplitude as the foil oscillates. Subsequent rises in the volt-
age level are generated when the reflected waves are super-
posed at the center of the microphone foil. The interval
between successive voltage packet peaks depends on the
wave propagation velocity in the membrane which is not
constant in this case because the system is dispersive.

Note that despite the difference in input wave form the
resulting voltage outputs (Figs. 6~8) show little difference.
This is because the system is highly resonant and tends to
ring at the seventh resonance frequency at about 16 Khz.
Every sharp change in the pressure input excites all the
modes regardless of its details in the input profile but seventh
mode always dominates the voltage output. In fact the damp-
ing associated with the seventh resonant mode is high relative
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Fig. 4 P=1, PR=-1, r=1x10"*
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Fig. 5 P =0.3, P.=-1., r=1%x10"*
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to the other modes and, therefore, even though the seventh
mode initially dormionates the N-wave response, it eventu-
ally decays sufficiently that other modes become comparable
in magnitude. This transition can be seen in Figs. 6 through 8
occuring at about 1.2 msec. After 1.2 msec the voltage signals
clearly appear to have more than one frequency components.

The results shown in Figs. 6 through 8 may be compared
with experimental results (Fig. 9) obtained in the laboratory
with the test microphone. In this test a Grozier Technical
System spark source was used to generate a broadband high
frequency acoustic signal at the microphone face. Although it
is very difficult to measure the exact shape of the acoustic
pulse generated, the Grozier literature predicts an N-wave of
the type shown in Fg. 2 with P,= P, and duration of 5x107°.
The same input data was used in the simulations whose
results are given in Figs. 6 through 8. Hence the experimental
results and predicted ones may be directly compared. The
spark amplitude measured in the laboratory and hence the
amplitude of the acoustic excitation was variable. As is clear
from Fig. 9, the experimental results (shape) were very
repeatable.

Figure 9 and Figs. 6 through 8 reveal a good similarity of
signal shape but not of the amplitude decay. As the figures
indicates, the real microphone exhibits a faster decay than
that predicted by the analysis. This result indicates that the
radiation resistance approximation made in the damping
effect estimate introduces errors. As mentioned earlier, the
heat transfer loss of energy should be taken into considera-
tion for the better prediction of the transient behavior of a
real microphone system.

5. CONCLUSION

Results given in previous section clearly show that both
experimentally and theoretically, a circular, edge-supported
electret microphone with no back cavity exhibits substantial
ringing. This suggests that such a microphone is not ideal for
recording transient events which contain very high fre-
quencies. It should be noted that a conventional electret
microphone has holes in the back electrode which lead to a
large back cavity. This geometry will not only affect the
frequency of each mode, but most likely also greatly enhance
the damping of each mode. Hence the results here can not be

extrapolated to a conventional electret microphone.

The success of the analytical technique opens several
avenues of further investigation. Questions which remains to
be answered include the following : What is the effect of
adding a back cavity and passages connecting the air gap and
back cavity ? What changes are necesary for treatment of
non-circular electret microphones? How do these results
compare to the transient response characteristics of conven-
tional condenser microphones ?
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